
React JS
anandkumar.training@gmail.com

Javascript
Refresher

Writing JavaScript

The <script> Tag
● JavaScript programs can be inserted almost anywhere into an HTML

document using the <script> tag. The <script> tag contains JavaScript code
which is automatically executed when the browser processes the tag.

● Attributes
○ type=”text/javascript”
○ language=”javascript”
○ src=”fileName.js”

● A single <script> tag can’t have both the src attribute and code inside.

● Hiding the Script : Comment the code written inside <script> tag using HTML
comments.

● If src is set, then contents written inside <script> are ignored.

JavaScript Basics

● We can write JavaScript in head section, body section and in an external file.
● JavaScript is case sensitive.
● It is good practice to end statement with semicolon.
● Single Line Comment : //this is comment
● Multiline Comment : /* this is comment */
● Nested comments are not supported.
● JavaScript is dynamically typed language (i.e. data types are available but

variables are not bound to them. Type of variable is decided based on the
value assigned to it)

● Semicolon at the end of statements are optional, but it is good practice to
write it to indicate end of statement.

●

JavaScript Basics

The Strict Mode
● ECMAScript 5 (ES5) added new features to the language and modified some of

the existing ones. To keep the old code working, most such modifications are
off by default. You need to explicitly enable them with a special directive: "use
strict".

● "use strict" must be at the top of your scripts, otherwise strict mode may not
be enabled.

● When it is located at the top of a script, the whole script works the “modern”
way. If it is written inside a function, strict mode is enabled only in that
function.

● For Ex. :
<script>

“use strict”;
//rest of the code

</script>

JavaScript Basics

Variables
● A variable is name

container for value
in memory.

● In modern
Javascript, variables
are declared using
let keyword. In old
Javascript, var
keyword is used to
declare variable.

● For Ex. : let myVar1;
let myVar2 = 10;

var let

function-scoped or
global-scoped

block-scoped

redeclaration is allowed redeclaring a variable
results in an error

“var” variables can be
declared below their use

“let” variables can not be
declared below their use

Variable Naming Rule
● The name must contain only letters, digits, or the

symbols $ and _.
● The first character must not be a digit.
● Reserved words cannot be used as variable names

The document Object
● When html document is loaded in the browser, it becomes a document

object. It is the root element that represents the html document. It has
properties and methods. By the help of document object, we can add
dynamic content to our web page.

● The document object is accessed with: window.document or just
document

● Methods
○ getELementById(“elementId”)
○ getElementsByClassName(“nameOfClass”)
○ getElementsByName(“elementName”)
○ getElementsByTagName(“tagName”)

Functions

● Functions are the main “building blocks” of the program. They allow the code to be
called many times without repetition.

● Function Declaration
○ function functionName(param1, param2, ….., paramN) { function body }

● Calling the function
○ functionName(argument1, argument2, ….., argumentN);

● Variables
○ A variable declared inside a function is only visible inside that function.
○ The function has full access to the outer variable. It can modify it as well.
○ The outer variable is only used if there’s no local one. If a same-named variable is

declared inside the function then it shadows the outer one.
○ Variables declared outside of any function, are called global. Global variables are

visible from any function (unless shadowed by locals).

Functions

● Parameters
○ We can pass arbitrary data to functions using parameters.
○ A parameter is the variable listed inside the parentheses in the function

declaration (it’s a declaration time term).
○ An argument is the value that is passed to the function when it is called (it’s a call

time term).
○ If a function is called, but an argument is not provided, then the corresponding

value becomes undefined.
For Ex. :
function sayHello(personName)
{

alert(“Hello” + personName); // Hello undefined
}
sayHello(); // no argument is passed

Functions

● Parameters
○ Default Value for parameter in Function Declaration

function sayHello(personName = “Name is not provide”)
{

alert(“Hello” + personName);
}
sayHello(); // no argument is passed

○ We can provide complex expression for default parameter, which is only
evaluated and assigned if the parameter is missing.
function sayHello(personName = anotherFunction())
{

alert(“Hello” + personName);
}
sayHello(); // no argument is passed

Functions

● Parameters
○ Modern JavaScript engines support the nullish coalescing operator ??
○ ?? returns the first argument if it’s not null/undefined. Otherwise, the second one.

function showCount(count)
{
 // if count is undefined or null, show "unknown"
 alert(count ?? "unknown");
}
showCount(0); // 0
showCount(null); // unknown
showCount(); // unknown

● Returning a value
○ A function can return a value back into the calling code as the result. A function

with an empty return or without it returns undefined.
○ Never add a newline between return and the value.

Function Expression

● Since Javascript treats function as a special kind of value, there is another way to
create a function, called as Function Expression. It allows us to create a new function
in the middle of any expression.

● For ex.
let sayHello = function() {

 alert("Hello");
}; //note the semicolon… it is required because it is expression
alert(sayHello) // Function: sayHello
alert(sayHello()) // Calls the function

● We can copy a function to another variable (no matter how the function is created)
For ex. : let anotherFunctSayHello = sayHello

● A Function Expression is created when the execution reaches it and is usable only
from that moment. A Function Declaration can be called earlier than it is defined.

Arrow Function

● There’s another very simple and concise syntax for creating functions, that’s often
better than Function Expressions. It’s called “arrow functions”, because it looks like
this: let func = (arg1, arg2, ..., argN) => expression;

● This creates a function func that accepts arguments arg1..argN, then evaluates the
expression on the right side with their use and returns its result. In other words, it’s
the shorter version of:

let func = function(arg1, arg2, ..., argN) {
return expression;

};
● If we have only one argument, then parentheses around parameters can be omitted,

making that even shorter. For example: let double = n => n * 2;
● If there are no arguments, parentheses are empty, but they must be present:

let sayHi = () => alert("Hello!");
●

Callback Functions (Callbacks)
● We can pass a function as an argument/value to other function.
● For Ex. :

function ask(question, yes, no) {
 if (confirm(question)) yes();
 else no();

}

function showOk() {
 alert("You agreed.");

}

function showCancel() {
 alert("You canceled the execution.");

}
// usage: functions showOk, showCancel are passed as arguments to ask
ask("Do you agree?", showOk, showCancel);

● The arguments showOk and showCancel of ask are called callback functions or just callbacks.
The idea is that we pass a function and expect it to be “called back” later if necessary.

Callback Function Use Case
<html>
 <head>
 <title>Script Demo</title>
 <script>
 function loadScript(src)
 {
 let script =
document.createElement('script');
 script.src = src;

document.head.append(script);
 }
 loadScript('./myscript.js');
 alert("Test the Flow");
 sayHello();
 </script>
 </head>
 <body></body>
</html>

<html>
 <head>
 <title>Script Demo</title>
 <script>
 function loadScript(src, callback) {
 let script = document.createElement('script');
 script.src = src;
 script.onload = () => callback(script);
 document.head.append(script);
 }
 function callSayHello(script) {
 alert(`Wow, the script ${script.src} is loaded`);
 sayHello();
 }
 loadScript('./myscript.js',callSayHello);
 /*loadScript('./myscript.js', script => {
 alert(`Cool, the script ${script.src} is loaded`);
 sayHello();
 });*/
 </script>
 </head>
 <body></body>
</html>

Promise - Analogy

Promise - Introduction

● A “producing code” that does something and takes time. For
instance, some code that loads the data over a network.

● A “consuming code” that wants the result of the “producing code”
once it’s ready. Many functions may need that result.

● A promise is a special JavaScript object that links the “producing
code” and the “consuming code” together. The “producing code”
takes whatever time it needs to produce the promised result, and
the “promise” makes that result available to all of the subscribed
code when it’s ready.

Promise - Syntax, Executor and States
● The constructor syntax for a promise object is:

let promise = new Promise(function(resolve, reject) {
 // executor (the producing code, "singer")
});

● The function passed to new Promise is called the executor. When new Promise is created,
the executor runs automatically. It contains the producing code which should eventually
produce the result.

● Its arguments resolve and reject are callbacks provided by JavaScript itself. Our code is only
inside the executor.

● When the executor obtains the result, be it soon or late, doesn’t matter, it should call one of
these callbacks:

○ resolve(value) — if the job is finished successfully, with result value.
○ reject(error) — if an error has occurred, error is the error object.

● The promise object returned by the new Promise constructor has these internal properties:
○ state — initially "pending", then changes to either "fulfilled" when resolve is called or

"rejected" when reject is called.
○ result — initially undefined, then changes to value when resolve(value) is called or

error when reject(error) is called.

Promise - Consumer
● A Promise uses an executor

function to complete a task
(mostly asynchronously). A
consumer function (that uses
an outcome of the promise)
should get notified when the
executor function is done
with either resolving
(success) or rejecting (error).

● The handler methods, .then(),
.catch() and .finally(), help to
create the link between the
executor and the consumer
functions so that they can be
in sync when a promise
resolves or rejects.

Promise - Example
Producer
function loadScript(src)
 {
 return new Promise(function(resolve, reject)
 {
 let script = document.createElement('script');
 script.src = src;
 script.onload = () => resolve(script);
 script.onerror = () => reject(new Error(`Script
load error for ${src}`));

 document.head.append(script);
 });
}

Consumer
let promise = loadScript("./myscript.js");

promise.then(
 script => alert(`${script.src} is loaded!`),
 error => alert(`Error: ${error.message}`)
);

promise.then(script => alert('Another
handler...'));

async await <script>
 async function example() {

 let promise = new
Promise((resolve, reject) => {
 setTimeout(() =>
resolve("done!"), 2000)
 });

 let result = await
promise; // wait until the
promise resolves (*)

 alert(result); // "done!"
 }
 example();
 </script>

● We use the async keyword with a function to represent
that the function is an asynchronous function. The
async function returns a promise. The syntax of async
function is:
async function name(parameter1, parameter2,
...paramaterN) {
 // statements
}

● The await keyword is used inside the async function to
wait for the asynchronous operation. The syntax to use
await is:
let result = await promise;

● The use of await pauses the async function until the
promise returns a result (resolve or reject) value.

React
Introduction

Introduction

What is React?
● ReactJS is a declarative, open source JavaScript library for building reusable UI

components.
● Created by Jordan Walke at Facebook in 2011
● Available for public from May 2013
● Used by Facebook for WhatsApp and Instagram
● Latest version is 18.2
● With React developers can create reusable UI components. These

components can be used any number of times anywhere in the application.
This reduces the time for debugging and rewriting.

● ReactJS uses virtual DOM based mechanism to fill data in HTML DOM.

Introduction

Virtual DOM
● Virtual DOM is a

lightweight copy of
the Real DOM
stored in the
memory. React
uses the virtual
DOM represented
as a tree.

Setup and Project Creation

● Download and install Node.js from
nodejs.org (Download LTS version)

● Open Command prompt and type
○ node --version to check if node is

installed successfully

○ npx create-react-app prjName : this
command will create a new subfolder
with a basic React project setup (i.e.,
with various files and folders) in the
place where you ran it

○ npm start : This will start a built-in
development server and open the
preview page. If that doesn't happen,
you can manually open a new tab and
navigate to localhost:3000

● The react project typically contains following files
and folders:

○ A src folder that contains the main source
code files for the project

○ An index.js file which is the main entry
script file that will be executed first

○ An App.js file which contains the root
component of the application

○ Various styling (*.css) files
○ Other files, like code files for automated

tests
○ A public folder which contains static files

that will be part of the final website. This
folder may contain static images like
favicons. The folder also contains an
index.html file which is the single HTML
page of this website

○ package.json and package-lock.json are
files that manage third-party dependencies
of your project

Test Your Knowledge

● 1. What is React?

● 2. Which advantage does React offer over vanilla JavaScript projects?

● 3. What's the difference between imperative and declarative code?

● 4. How can you create new React projects and why do you need such a more
complex project setup?

How React Works?

a.
Index.html

(Rendered by
Browser)

b.
Index.js

(Entry Point of
react

Application)

c.
App.js

(The Root
Component)

Introduction to Components

● A Component is one of the core building blocks of React. In other words, we
can say that every application you will develop in React will be made up of
pieces called components. Components make the task of building UIs much
easier. You can see a UI broken down into multiple individual pieces called
components and work on them independently and merge them all in a
parent component which will be your final UI.

● Every React component have their own structure, methods as well as APIs.
They can be reusable as per your need.

● When working with React, it's especially important to keep your code
manageable and work with small, reusable components because React
components are not just collections of HTML code. Instead, a React
component also encapsulates JavaScript logic and often also CSS styling.

Introduction to Components

Function Components

● In React, function components are a way to write components that only
contain a render method and don't have their own state. They are simply
JavaScript functions that may or may not receive data as parameters. We can
create a function that takes props(properties) as input and returns what
should be rendered.

● The functional component is also known as a stateless component because
they do not hold or manage state.

● A valid functional component can be shown in the below example.

function WelcomeMessage(props)
{
 return <h1>Welcome to the , {props.name}</h1>;
}

Class Components

● Class components are more complex than functional components. It requires you to
extend from React. Component and create a render function which returns a React
element. You can pass data from one class to other class components. You can create
a class by defining a class that extends Component and has a render function.

● The class component is also known as a stateful component because they can hold or
manage local state.

● Valid class component is shown in the below example.

class MyComponent extends React.Component {
 render() {
 return (
 <div>This is main component.</div>
);
 }
}

Introduction to JSX

● JSX (JavaScript XML), is a React extension which allows writing JavaScript code
that looks like HTML. In other words, JSX is an HTML-like syntax used by
React that extends ECMAScript so that HTML-like syntax can co-exist with
JavaScript/React code. The syntax is used by preprocessors (i.e., transpilers
like babel) to transform HTML-like syntax into standard JavaScript objects
that a JavaScript engine will parse.

● JSX provides you to write HTML/XML-like structures (e.g., DOM-like tree
structures) in the same file where you write JavaScript code, then
preprocessor will transform these expressions into actual JavaScript code.
Just like XML/HTML, JSX tags have a tag name, attributes, and children.

Why JSX?

Create <h1> using JSX
function Hello() { return <h1>Hello, World!</h1>}

Create <h1> using Javascript
function Hello() { return React.createElement("h1", {}, "Hello, World!")}

Why JSX?

Another Example

Create Nested Elements
using JSX

NavList() {
return (

Home
About
Portfolio
Contact

);

}

Create Nested Elements using Javascript

NavList() {
return (
 React.createElement
 ("ul", {},
 React.createElement("li", null, "Home"),
 React.createElement("li", null, "About"),
 React.createElement("li", null, "Portfolio"),
 React.createElement("li", null, "Contact")
)
);
}

Which syntax is easy and convenient? JSX or JS?

JSX Rules

● A React component name must be capitalized (Pascal Case). Component names that
do not begin with a capital letter are treated like built-in components.

● JSX allows you to return only one element from a given component. This is known as a
parent element. If you want to return multiple HTML elements, simply wrap all of
them in a single <div></div>, <React.fragments></React.fragments>, <></> or any
semnatic tag.

● In JSX, every tag, including self closing tags, must be closed. In case of self closing tags
you have to add a slash at the end (for example , <hr/>, and so on).

● Since JSX is closer to JavaScript than to HTML, the React DOM uses the camelCase
naming convention for HTML attribute names. For example: tabIndex, onChnage, and
so on.

● "class" and "for" are reserved keywords in JavaScript, so use "className" and
"forHTML" instead, respectively.

● To include JavaScript expressions in JSX, you need to wrap them in curly braces.
Content between the opening and closing curly braces will be evaluated as JavaScript.

● Comment : {/* This is a JSX comment */}

Props

● props stands for properties. Props are arguments passed into React
components.

● Props are passed to components via HTML attributes.

● React Props are like function arguments in JavaScript and attributes in HTML.
To send props into a component, use the same syntax as HTML attributes:
○ Ex. : const myElement = <Car brand="Ford" />;

● The component receives the argument as a props object. Use the brand
attribute in the component.
○ function Car(props) {

 return <h2>I am a { props.brand }!</h2>;
}

