
Data Structures

Prof. Anand Jain, anand.jain@pccoepune.org



Prerequisite

❖Computer Fundamentals

❖C Programming



After learning the course, the students should be able to:

1. To demonstrate data structures linked list, stack and

queue.

2. To describe searching and sorting techniques.

3. To implement tree, graph data structures.

4. To apply design principles and concepts for Data

Structure to solve problems.

Course Outcomes



Unit 01 : Introduction to Data Structure



Fundamentals of Data Structure

❖ Data Structure Definition

▪ A data structure is a system used to store data, keep it organized,

and enable easy modification and access. A data structure refers to a

group of data values, how they relate to each other, and the

operations or functions that can be carried out on them.

❖ Need of Data Structure

▪ To organize the data in main memory (RAM)

▪ To improve the efficiency of computer while performing operations

▪ To handle large amount of data with desired processing speed

▪ Data Search



Classification of Data Structure

Image Source : https://techieshouts.com/data-structures-introduction/



Classification of Data Structure

❖ Primitive Data Structure

▪ The data structures that are directly operated upon by machine level

instructions are called as primitive data structures. These are

predefined types of data, which are supported by the programming

language. For example, integer, character, and string are all primitive

data types. Programmers can use these data types when creating

variables in their programs. For example, a programmer may create a

variable called "lastname" and define it as a string data type. The

variable will then store data as a string of characters.



Classification of Data Structure

❖ Non-Primitive Data Structure

▪ Derived from primitive data structures

▪ Not defined by the programming language but are created by the

programmer

▪ emphasize on structuring of a group of homogeneous or

heterogeneous data items

▪ further divided into Linear and Non-Linear data structure

▪ Examples : Array, Stack, Tree, File etc



Classification of Data Structure

❖ Linear Data Structure : Data structure whose element(objects) are

sequential and ordered in a way so that:

▪ there is only one first element and has only one next element

▪ there is only one last element and has only one previous element

▪ all other elements have a next and a previous element

❖ A Linear data structure have data elements arranged in sequential

manner and each member element is connected to its previous and next

element. Such data structures are easy to implement as computer

memory is also sequential.

❖ Examples of linear data structures are List, Queue, Stack, Array etc.



Classification of Data Structure

❖ Non-Linear Data Structure : Nonlinear data structures are those data

structures in which data items are not arranged in a sequence.

❖ A non-linear data structure has no set sequence of connecting all its

elements and each element can have multiple paths to connect to other

elements.

❖ Such data structures supports multi-level storage and often cannot be

traversed in single run. Such data structures are not easy to implement

but are more efficient in utilizing computer memory.

❖ Examples of non-linear data structures are Tree, BST, Graphs etc.



Classification of Data Structure

❖ Linear Vs. Non-Linear Data Structure

Sr. No. Key Linear Data Structures Non-linear Data Structures

1
Data Element 

Arrangement

In linear data structure, data 

elements are sequentially connected 

and each element is traversable 

through a single run.

In non-linear data structure, data 

elements are hierarchically 

connected and are present at various 

levels.

2 Levels

In linear data structure, all data 

elements are present at a single 

level.

In non-linear data structure, data 

elements are present at multiple 

levels.

3
Implementation 

complexity

Linear data structures are easier to 

implement.

Non-linear data structures are difficult 

to understand and implement as 

compared to linear data structures.

4 Traversal
Linear data structures can be 

traversed completely in a single run.

Non-linear data structures are not 

easy to traverse and needs multiple 

runs to be traversed completely.

5 Memory utilization

Linear data structures are not very 

memory friendly and are not utilizing 

memory efficiently.

Non-linear data structures uses 

memory very efficiently.

6 Time Complexity

Time complexity of linear data 

structure often increases with 

increase in size.

Time complexity of non-linear data 

structure often remain with increase 

in size.

7 Examples Array, List, Queue, Stack. Graph, Map, Tree.



Array

❖ An array is finite, ordered and collection of homogeneous data elements.

❖ Used to store group of data together in one place

❖ All the elements of an array are stored in linear order

❖ Syntax in C : datatype arrayName[arraySize];

❖ For ex. : int num[10];

❖ Terminologies

▪ Size

▪ Type

▪ Base

▪ Index

▪ Range of Indices



Array

❖ One Dimensional Array Representation



Array

a



Array

❖ Operations on Array

▪ Traverse : Display all the elements of array one by one

▪ Insert : Adds an element at the given index

▪ Delete : Deletes an element at the given index

▪ Search : Searches an element using the given index or by the value

▪ Update : Updates an element at the given index

▪ Sort : Sort array elements in ascending or descending order

▪ Merge : Combining two (or more) arrays into one array



Array

❖ Insert Operation on Array : This operation is used to insert an element

into an array, provided array is not full.

❖ Algorithm

▪ 1. Get the element value which needs to be inserted.

▪ 2. Get the position value.

▪ 3. Check whether the position value is valid or not.

▪ 4. If it is valid,

• Shift all the elements from the last index to position index by 1

position to the right.

• insert the new element in arr[position]

▪ 5. Otherwise,

• Invalid Position



Array

❖ Delete Operation on Array : This operation is used to delete a particular

element from an array, provided array is not empty. The element will be

deleted by pushing the tail (part of array after the element which is to be

deleted) one stroke up.

❖ Algorithm

▪ 1. Find the given element in the given array and note the index.

▪ 2. If the element found,

• Shift all the elements from index + 1 by 1 position to the left

▪ 3. Otherwise, print "Element Not Found"



Array

❖ Search Operation on Array : This operation is applied to search an

element in the array.

❖ Binary Search Algorithm

▪ At every step, consider the array between low and high indices

▪ Calculate the mid index.

▪ If the element at the mid index is the key, return mid.

▪ If the element at mid is greater than the key, then change the

index high to mid - 1.

▪ The index at low remains the same.

▪ If the element at mid is less than the key, then change low to mid + 1.

The index at high remains the same.

▪ When low is greater than high, the key doesn’t exist and -1 is

returned.



Array

❖ Insert Operation on Array : This

operation is used to insert an element into

an array, provided array is not full.

❖ Algorithm

▪ 1. Get the element value which needs 

to be inserted.

▪ 2. Get the position value.

▪ 3. Check whether the position value 

is valid or not.

▪ 4. If it is valid,

• Shift all the elements from the 

last index to position index by 1 

position to the right.

• insert the new element 

in arr[position]

▪ 5. Otherwise,

• Invalid Position




