
Tree
❖ A tree is a non-linear data structure. It is a collection of objects or entities known

as nodes that are linked together by directed or undirected edges to represent or
simulate hierarchy.

❖ A tree data structure is a non-linear data structure because it does not store in a
sequential manner. It is a hierarchical structure as elements in a Tree are
arranged in multiple levels.

Success Institute of Technology Slide No. 1

Tree Terminologies

Slide No. 2

Tree Terminologies
❖ Root : The first node from where the tree originates is called as a root node. In

any tree, there must be only one root node. We can never have multiple root

nodes in a tree data structure.

❖ Edge : The connecting link between any two nodes is called as an edge. In a tree

with n number of nodes, there are exactly (n-1) number of edges.

❖ Parent : The node which has a branch from it to any other node is called as

a parent node. In other words, the node which has one or more children is called

as a parent node. In a tree, a parent node can have any number of child nodes.

❖ Child : The node which is a descendant of some node is called as a child node. All

the nodes except root node are child nodes.

❖ Siblings : Nodes which belong to the same parent are called as siblings.

Slide No. 3

Tree Terminologies
❖ Degree : Degree of a node is the total number of children of that node.

Degree of a tree is the highest degree of a node among all the nodes in

the tree.

❖ Internal Node : The node which has at least one child is called as

an internal node. Internal nodes are also called as non-terminal nodes.

Every non-leaf node is an internal node.

❖ Leaf Node : The node which does not have any child is called as a leaf

node. Leaf nodes are also called as external nodes or terminal nodes.

❖ Level : Each step from top to bottom is called as level of a tree. The level

count starts with 0 and increments by 1 at each level or step.

Slide No. 4

Tree Terminologies
❖ Height : Total number of edges that lies on the longest path from any

leaf node to a particular node is called as height of that node. Height of

a tree is the height of root node. Height of all leaf nodes = 0

❖ Depth : Total number of edges from root node to a particular node is

called as depth of that node. Depth of a tree is the total number of

edges from root node to a leaf node in the longest path. Depth of the

root node = 0. The terms “level” and “depth” are used interchangeably.

❖ Subtree : In a tree, each child from a node forms a subtree recursively.

Every child node forms a subtree on its parent node.

Slide No. 5

Tree Terminologies
❖ Ancestor : For any node n, its ancestors are the nodes which are on the

path between roots to n.

❖ Descendent : The immediate successor of the given node is known as a

descendant of a node.

❖ Keys : Key represents a value based on which a search operation is to

be carried out for a node.

❖ Forest : A forest is a set of disjoint trees.

Slide No. 6

Tree Terminologies

Slide No. 7

Ancestor

Descendent

Tree Terminologies

Slide No. 8

Ancestor

Descendent

Binary Tree
❖ A binary tree is a tree-type non-linear data structure with a maximum of

two children for each parent. Every node in a binary tree has a left and

right reference along with the data element. The node at the top of the

hierarchy of a tree is called the root node. The nodes that hold other

sub-nodes are the parent nodes.

Slide No. 9

Binary Tree Properties
❖ In any binary tree, the maximum number of nodes on level ‘l’ is ‘2l’.

❖ The maximum number of nodes possible in a binary tree of height h is

2h-1 (2h+1-1, if h is starting from 0).

❖ The minimum number of nodes possible in a binary tree of height h is h.

❖ For any non-empty binary tree, if n is the no. of nodes and e is the no.

of edges then n=e+1

❖ Maximum no. of leaf nodes in binary tree = Total no. of nodes with 2

children + 1

❖ The height of complete binary tree with n number of nodes is log2(n+1)

❖ Total no. of binary trees possible with n nodes is (1/(n+1)) * 2nCn

Slide No. 10

Binary Tree Representation
❖ Linear Representation

❖ Consider the expression (A-B) + C * (D/E)

Slide No. 11

TREE

ARRAY

Represent the following tree using Array

Slide No. 12

Binary Tree Representation
❖ Linked Representation : We use a double linked list to represent a

binary tree. In a double linked list, every node consists of three fields.

First field for storing left child address, second for storing actual data

and third for storing right child address.

Slide No. 13

Binary Tree Traversal

❖ “In computer science, tree traversal (also known as tree search)

is a form of graph traversal and refers to the process of visiting

(checking and/or updating) each node in a tree data structure,

exactly once. Such traversals are classified by the order in which

the nodes are visited.” — Wikipedia

❖ Traversal Methods

▪ Inorder (Left Child – Root – Right Child)

▪ Preorder (Root - Left Child – Right Child)

▪ Postorder (Left Child – Right Child - Root)

Slide No. 14

Binary Tree Traversal
❖ Inorder Traversal : In this traversal, the left child node is visited first,

then the root node is visited and later we go for visiting the right child

node. This in-order traversal is applicable for every root node of all

subtrees in the tree. This is performed recursively for all nodes in the

tree.

Slide No. 15

Inorder Traversal :
D → B → E → A → F → C → G

Binary Tree Traversal
❖ Preorder Traversal : In this traversal, the root node is visited first, then

its left child and later its right child. This pre-order traversal is

applicable for every root node of all subtrees in the tree.

Slide No. 16

Preorder Traversal :
A → B → D → E → C → F → G

Binary Tree Traversal
❖ Postorder Traversal : In this traversal, left child node is visited first,

then its right child and then its root node. This is recursively performed

until the right most node is visited.

Slide No. 17

Postorder Traversal :
D → E → B → F → G → C → A

Binary Tree Traversal

Slide No. 18

Inorder Traversal :
I - D - J - B - F - A - G - K - C - H

Preorder Traversal :
A - B - D - I - J - F - C - G - K - H

Postorder Traversal :
I - J - D - F - B - K - G - H - C - A

Binary Search Tree
❖ Binary Search Tree is a node-based binary tree data structure which has the

following properties:
▪ The left subtree of a node contains only nodes with keys lesser than the

node’s key.
▪ The right subtree of a node contains only nodes with keys greater than the

node’s key.
▪ The left and right subtree each must also be a binary search tree.

Slide No. 19

Binary Search Tree
❖ Need of BST

▪ The two major factors that make binary search tree an optimum
solution to any real-world problems are Speed and Accuracy.

▪ In case the element to be searched greater or less than the parent
node, the node knows which tree side to search for. The reason is,
the left sub-tree is always lesser than the parent node, and the right
sub-tree has values always equal to or greater than the parent
node.

▪ BST is commonly utilized to implement complex searches, robust
game logics, auto-complete activities, and graphics.

▪ The algorithm efficiently supports operations like search, insert, and
delete.

Slide No. 20

Binary Search Tree Operations
❖ Search : Always initiate analyzing tree at the root node and then move

further to either the right or left subtree of the root node depending
upon the element to be located is either less or greater than the root.

Slide No. 21

Binary Search Tree Operations
❖ Insert : This is a very straight forward operation. First, the root node is

inserted, then the next value is compared with the root node. If the
value is greater than root, it is added to the right subtree, and if it is
lesser than the root, it is added to the left subtree.

Slide No. 22

Binary Search Tree Operations
❖ Delete : Delete is the most advanced and complex among all other

operations. There are multiple cases handled for deletion in the BST.

❖ Case 1- Node with zero children: this is the easiest situation, you just
need to delete the node which has no further children on the right or
left.

❖ Case 2 - Node with one child: once you delete the node, simply connect
its child node with the parent node of the deleted value.

❖ Case 3 Node with two children: this is the most difficult situation, and it
works on the following two rules
▪ 3a - In Order Predecessor: you need to delete the node with two

children and replace it with the largest value on the left-subtree of
the deleted node

▪ 3b - In Order Successor: you need to delete the node with two
children and replace it with the smallest value on the right-subtree
of the deleted node

Slide No. 23

Binary Search Tree Operations
❖ Case 1:

Slide No. 24

Binary Search Tree Operations
❖ Case 2:

Slide No. 25

Binary Search Tree Operations
❖ Case 3a:

Slide No. 26

Binary Search Tree Operations
❖ Case 3b:

Slide No. 27

Binary Tree Types

❖ Full Binary Tree : Full Binary Tree is a Binary Tree in which

every node has 0 or 2 children.

❖ Number of Leaf nodes = Number of Internal nodes + 1

❖ Minimum No. of Nodes = 2h-1, where h is height of tree.

❖ Maximum No. of Nodes = 2h+1-1, where h is height of tree.

Slide No. 28

Binary Tree Types

❖ Complete Binary Tree : Complete Binary Tree has all levels

completely filled with nodes except the last level and in the last

level, all the nodes are as left side as possible.

❖ The number of internal nodes in a complete binary tree of n

nodes is floor(n/2).

Slide No. 29

Valid

Binary Tree Types

❖ Perfect Binary Tree : Perfect Binary Tree is a Binary Tree in

which all internal nodes have 2 children and all the leaf nodes

are at the same depth or same level.

❖ A perfect binary tree with l leaves has n = 2l-1 nodes.

Slide No. 30

Valid

Binary Tree Types
❖ Balanced Binary Tree : Balanced

binary tree: A binary tree is height

balanced if it satisfies the following

constraints:

▪ The left and right subtrees'

heights differ by at most one, AND

▪ The left subtree is balanced, AND

▪ The right subtree is balanced

❖ An empty tree is height balanced.

❖ The height of a balanced binary tree is
O(Log n) where n is number of nodes.

Slide No. 31

Binary Tree Types

❖ Degenerate Tree : It is a tree is where each parent node has

only one child node. It behaves like a linked list.

❖ Height of a Degenerate Binary Tree is equal to Total number of

nodes in that tree.

Slide No. 32

Threaded Binary Tree
❖ Threaded Binary Tree is a binary tree in which all left child pointers that

are NULL points to its in-order predecessor, and all right child pointers
that are NULL points to its in-order successor.

❖ If there are 2N number of reference fields, then N+1 number of reference
fields are filled with NULL (N+1 are NULL out of 2N).

❖ Threaded Binary Tree makes use of NULL pointers to improve its traversal
process. In a threaded binary tree, NULL pointers are replaced by
references of other nodes in the tree. These extra references are called
as thread.

❖ Single Threaded Binary Tree : Right Null Pointers points to inorder
successor

❖ Double Threaded Binary Tree : Left and Right Null Pointers points to
inorder predecessor and inorder successor respectively.

❖ Threaded binary tree makes the tree traversal faster since we do not need
stack or recursion for traversal

Slide No. 33

Threaded Binary Tree

❖ In-order traversal :
 H - D - I - B - E - A - F - J - C - G

Slide No. 34

AVL Tree
❖ AVL (GM Adelson - Velsky and EM

Landis, 1962) Tree can be defined
as height balanced binary search
tree in which each node is
associated with a balance factor
which is calculated by subtracting
the height of its right sub-tree
from that of its left sub-tree.

❖ Balance Factor of Node = Height of
Left Subtree – Height of Right
Subtree

❖ If balance factor of every node is
between -1 to 1, then the tree is
AVL Tree.

Slide No. 35

AVL Tree
❖ Complexity of AVL Tree

❖ AVL Rotations

❖ Left rotation

❖ Right Rotation

❖ Left Right Rotation

❖ Right Left Rotation

❖ The first two rotations Left and Right are single rotations and the next two

rotations LR and RL are double rotations. For a tree to be unbalanced,

minimum height must be at least 2

Slide No. 36

Algorithm/Operation Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)

AVL Tree

❖ Left Rotation : If a tree becomes unbalanced, when a node is inserted into
the right subtree of the right subtree, then we perform a single left
rotation.

❖ Right Rotation : AVL tree may become unbalanced, if a node is inserted in
the left subtree of the left subtree. The tree then needs a right rotation.

Slide No. 37

AVL Tree

❖ Left - Right Rotation : A left-right rotation is a combination of left rotation
followed by right rotation. It is performed when node is inserted into the
right subtree of left subtree.

Slide No. 38

A node has been inserted
into the right subtree of
the left subtree. This
makes C an unbalanced
node. These scenarios
cause AVL tree to
perform left-right
rotation.
We first perform the left
rotation on the left
subtree of C. This
makes A, the left subtree
of B.

Node C is still
unbalanced, however
now, it is because of the
left-subtree of the
left-subtree.

We shall now right-rotate
the tree, making B the
new root node of this
subtree. C now becomes
the right subtree of its
own left subtree.

AVL Tree

❖ Right - Left Rotation : A right-left rotation is a combination of right
rotation followed by left rotation. It is performed when node is inserted
into the left subtree of right subtree.

Slide No. 39

A node has been inserted
into the left subtree of
the right subtree. This
makes A, an unbalanced
node with balance factor
2.
First, we perform the
right rotation
along C node,
making C the right
subtree of its own left
subtree B.
Now, B becomes the
right subtree of A.

Node A is still
unbalanced because of
the right subtree of its
right subtree and
requires a left rotation.

A left rotation is
performed by
making B the new root
node of the
subtree. A becomes the
left subtree of its right
subtree B.

