
Tree
❖ A tree is a non-linear data structure. It is a collection of objects or entities known 

as nodes that are linked together by directed or undirected edges to represent or 
simulate hierarchy.

❖ A tree data structure is a non-linear data structure because it does not store in a 
sequential manner. It is a hierarchical structure as elements in a Tree are 
arranged in multiple levels.
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Tree Terminologies
❖ Root : The first node from where the tree originates is called as a root node. In 

any tree, there must be only one root node. We can never have multiple root 

nodes in a tree data structure.

❖ Edge : The connecting link between any two nodes is called as an edge. In a tree 

with n number of nodes, there are exactly (n-1) number of edges.

❖ Parent : The node which has a branch from it to any other node is called as 

a parent node. In other words, the node which has one or more children is called 

as a parent node. In a tree, a parent node can have any number of child nodes.

❖ Child : The node which is a descendant of some node is called as a child node. All 

the nodes except root node are child nodes.

❖ Siblings : Nodes which belong to the same parent are called as siblings.
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Tree Terminologies
❖ Degree : Degree of a node is the total number of children of that node. 

Degree of a tree is the highest degree of a node among all the nodes in 

the tree.

❖ Internal Node : The node which has at least one child is called as 

an internal node. Internal nodes are also called as non-terminal nodes. 

Every non-leaf node is an internal node.

❖ Leaf Node : The node which does not have any child is called as a leaf 

node. Leaf nodes are also called as external nodes or terminal nodes.

❖ Level : Each step from top to bottom is called as level of a tree. The level 

count starts with 0 and increments by 1 at each level or step.
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Tree Terminologies
❖ Height : Total number of edges that lies on the longest path from any 

leaf node to a particular node is called as height of that node. Height of 

a tree is the height of root node. Height of all leaf nodes = 0

❖ Depth : Total number of edges from root node to a particular node is 

called as depth of that node. Depth of a tree is the total number of 

edges from root node to a leaf node in the longest path. Depth of the 

root node = 0. The terms “level” and “depth” are used interchangeably.

❖ Subtree : In a tree, each child from a node forms a subtree recursively. 

Every child node forms a subtree on its parent node.
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Tree Terminologies
❖ Ancestor : For any node n, its ancestors are the nodes which are on the 

path between roots to n.

❖ Descendent : The immediate successor of the given node is known as a 

descendant of a node.

❖ Keys : Key represents a value based on which a search operation is to 

be carried out for a node.

❖ Forest : A forest is a set of disjoint trees.
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Tree Terminologies
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Binary Tree
❖ A binary tree is a tree-type non-linear data structure with a maximum of 

two children for each parent. Every node in a binary tree has a left and 

right reference along with the data element. The node at the top of the 

hierarchy of a tree is called the root node. The nodes that hold other 

sub-nodes are the parent nodes.
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Binary Tree Properties
❖ In any binary tree, the maximum number of nodes on level ‘l’ is ‘2l’. 

❖ The maximum number of nodes possible in a binary tree of height h is 

2h-1 (2h+1-1, if h is starting from 0).

❖ The minimum number of nodes possible in a binary tree of height h is h.

❖ For any non-empty binary tree, if n is the no. of nodes and e is the no. 

of edges then n=e+1

❖ Maximum no. of leaf nodes in binary tree = Total no. of nodes with 2 

children + 1

❖ The height of complete binary tree with n number of nodes is log2(n+1)

❖ Total no. of binary trees possible with n nodes is (1/(n+1)) * 2nCn
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Binary Tree Representation
❖ Linear Representation

❖ Consider the expression (A-B) + C * (D/E)
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Represent the following tree using Array
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Binary Tree Representation
❖ Linked Representation : We use a double linked list to represent a 

binary tree. In a double linked list, every node consists of three fields. 

First field for storing left child address, second for storing actual data 

and third for storing right child address.
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Binary Tree Traversal

❖ “In computer science, tree traversal (also known as tree search) 

is a form of graph traversal and refers to the process of visiting 

(checking and/or updating) each node in a tree data structure, 

exactly once. Such traversals are classified by the order in which 

the nodes are visited.” — Wikipedia

❖ Traversal Methods

▪ Inorder (Left Child – Root – Right Child)

▪ Preorder (Root - Left Child – Right Child)

▪ Postorder (Left Child – Right Child - Root)
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Binary Tree Traversal
❖ Inorder Traversal : In this traversal, the left child node is visited first, 

then the root node is visited and later we go for visiting the right child 

node. This in-order traversal is applicable for every root node of all 

subtrees in the tree. This is performed recursively for all nodes in the 

tree.
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Binary Tree Traversal
❖ Preorder Traversal : In this traversal, the root node is visited first, then 

its left child and later its right child. This pre-order traversal is 

applicable for every root node of all subtrees in the tree.
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Preorder Traversal :
A → B → D → E → C → F → G



Binary Tree Traversal
❖ Postorder Traversal : In this traversal, left child node is visited first, 

then its right child and then its root node. This is recursively performed 

until the right most node is visited.
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Postorder Traversal :
D → E → B → F → G → C → A



Binary Tree Traversal
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Inorder Traversal :
I - D - J - B - F - A - G - K - C - H

Preorder Traversal :
A - B - D - I - J - F - C - G - K - H

Postorder Traversal :
I - J - D - F - B - K - G - H - C - A



Binary Search Tree
❖ Binary Search Tree is a node-based binary tree data structure which has the 

following properties:
▪ The left subtree of a node contains only nodes with keys lesser than the 

node’s key.
▪ The right subtree of a node contains only nodes with keys greater than the 

node’s key.
▪ The left and right subtree each must also be a binary search tree.
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Binary Search Tree
❖ Need of BST

▪ The two major factors that make binary search tree an optimum 
solution to any real-world problems are Speed and Accuracy.

▪ In case the element to be searched greater or less than the parent 
node, the node knows which tree side to search for. The reason is, 
the left sub-tree is always lesser than the parent node, and the right 
sub-tree has values always equal to or greater than the parent 
node.

▪ BST is commonly utilized to implement complex searches, robust 
game logics, auto-complete activities, and graphics.

▪ The algorithm efficiently supports operations like search, insert, and 
delete.
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Binary Search Tree Operations
❖ Search : Always initiate analyzing tree at the root node and then move 

further to either the right or left subtree of the root node depending 
upon the element to be located is either less or greater than the root.
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Binary Search Tree Operations
❖ Insert : This is a very straight forward operation. First, the root node is 

inserted, then the next value is compared with the root node. If the 
value is greater than root, it is added to the right subtree, and if it is 
lesser than the root, it is added to the left subtree.
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Binary Search Tree Operations
❖ Delete : Delete is the most advanced and complex among all other 

operations. There are multiple cases handled for deletion in the BST.

❖ Case 1- Node with zero children: this is the easiest situation, you just 
need to delete the node which has no further children on the right or 
left.

❖ Case 2 - Node with one child: once you delete the node, simply connect 
its child node with the parent node of the deleted value.

❖ Case 3 Node with two children: this is the most difficult situation, and it 
works on the following two rules
▪ 3a - In Order Predecessor: you need to delete the node with two 

children and replace it with the largest value on the left-subtree of 
the deleted node

▪ 3b - In Order Successor: you need to delete the node with two 
children and replace it with the smallest value on the right-subtree 
of the deleted node
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Binary Search Tree Operations
❖ Case 1: 
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Binary Search Tree Operations
❖ Case 2: 
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Binary Search Tree Operations
❖ Case 3a: 
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Binary Search Tree Operations
❖ Case 3b: 
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Binary Tree Types

❖ Full Binary Tree : Full Binary Tree is a Binary Tree in which 

every node has 0 or 2 children.

❖ Number of Leaf nodes = Number of Internal nodes + 1

❖ Minimum No. of Nodes = 2h-1, where h is height of tree.

❖ Maximum No. of Nodes = 2h+1-1, where h is height of tree.
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Binary Tree Types

❖ Complete Binary Tree : Complete Binary Tree has all levels 

completely filled with nodes except the last level and in the last 

level, all the nodes are as left side as possible.

❖ The number of internal nodes in a complete binary tree of n 

nodes is floor(n/2).
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Binary Tree Types

❖ Perfect Binary Tree : Perfect Binary Tree is a Binary Tree in 

which all internal nodes have 2 children and all the leaf nodes 

are at the same depth or same level.

❖ A perfect binary tree with l leaves has n = 2l-1 nodes.
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Binary Tree Types
❖ Balanced Binary Tree : Balanced 

binary tree: A binary tree is height 

balanced if it satisfies the following 

constraints:

▪ The left and right subtrees' 

heights differ by at most one, AND

▪ The left subtree is balanced, AND

▪ The right subtree is balanced

❖ An empty tree is height balanced.

❖ The height of a balanced binary tree is 
O(Log n) where n is number of nodes.
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Binary Tree Types

❖ Degenerate Tree : It is a tree is where each parent node has 

only one child node. It behaves like a linked list.

❖ Height of a Degenerate Binary Tree is equal to Total number of 

nodes in that tree.
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Threaded Binary Tree
❖ Threaded Binary Tree is a binary tree in which all left child pointers that 

are NULL points to its in-order predecessor, and all right child pointers 
that are NULL points to its in-order successor.

❖ If there are 2N number of reference fields, then N+1 number of reference 
fields are filled with NULL ( N+1 are NULL out of 2N ). 

❖ Threaded Binary Tree makes use of NULL pointers to improve its traversal 
process. In a threaded binary tree, NULL pointers are replaced by 
references of other nodes in the tree. These extra references are called 
as thread.

❖ Single Threaded Binary Tree : Right Null Pointers points to inorder 
successor

❖ Double Threaded Binary Tree : Left and Right Null Pointers points to 
inorder predecessor and inorder successor respectively.

❖ Threaded binary tree makes the tree traversal faster since we do not need 
stack or recursion for traversal
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Threaded Binary Tree

❖ In-order traversal :
 H - D - I - B - E - A - F - J - C - G
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AVL Tree
❖ AVL (GM Adelson - Velsky and EM 

Landis, 1962) Tree can be defined 
as height balanced binary search 
tree in which each node is 
associated with a balance factor 
which is calculated by subtracting 
the height of its right sub-tree 
from that of its left sub-tree.

❖ Balance Factor of Node = Height of 
Left Subtree – Height of Right 
Subtree

❖ If balance factor of every node is 
between -1 to 1, then the tree is 
AVL Tree.
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AVL Tree
❖ Complexity of AVL Tree

❖ AVL Rotations

❖ Left rotation

❖ Right Rotation

❖ Left Right Rotation

❖ Right Left Rotation

❖ The first two rotations Left and Right are single rotations and the next two 

rotations LR and RL are double rotations. For a tree to be unbalanced, 

minimum height must be at least 2
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Algorithm/Operation Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)



AVL Tree

❖ Left Rotation : If a tree becomes unbalanced, when a node is inserted into 
the right subtree of the right subtree, then we perform a single left 
rotation.

❖ Right Rotation : AVL tree may become unbalanced, if a node is inserted in 
the left subtree of the left subtree. The tree then needs a right rotation.
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AVL Tree

❖ Left - Right Rotation : A left-right rotation is a combination of left rotation 
followed by right rotation. It is performed when node is inserted into the 
right subtree of left subtree.
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A node has been inserted 
into the right subtree of 
the left subtree. This 
makes C an unbalanced 
node. These scenarios 
cause AVL tree to 
perform left-right 
rotation.
We first perform the left 
rotation on the left 
subtree of C. This 
makes A, the left subtree 
of B.

Node C is still 
unbalanced, however 
now, it is because of the 
left-subtree of the 
left-subtree.

We shall now right-rotate 
the tree, making B the 
new root node of this 
subtree. C now becomes 
the right subtree of its 
own left subtree.



AVL Tree

❖ Right - Left Rotation : A right-left rotation is a combination of right 
rotation followed by left rotation. It is performed when node is inserted 
into the left subtree of right subtree.
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A node has been inserted 
into the left subtree of 
the right subtree. This 
makes A, an unbalanced 
node with balance factor 
2.
First, we perform the 
right rotation 
along C node, 
making C the right 
subtree of its own left 
subtree B. 
Now, B becomes the 
right subtree of A.

Node A is still 
unbalanced because of 
the right subtree of its 
right subtree and 
requires a left rotation.

A left rotation is 
performed by 
making B the new root 
node of the 
subtree. A becomes the 
left subtree of its right 
subtree B.


